Warm-Up

Numerical Expressions with Exponents

Lesson Question

What are powers and exponents?

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

evaluate	to determine the value of
base	the number in an exponential expression that is being multiplied by itself
exponent	the number in an exponential expression that indicates how many factors of the base are being multiplied
power	a base raised to an exponent

© Edgenuity, Inc.

Instruction

Numerical Expressions with Exponents

Slide

Understanding Powers

A power is a base raised to an exponent.

The number 2³ is '

2 raised to

base

raised to the third power" or "two

cubed

A power is a shorter way to write

repeated

multiplication.

$$2^3 = 2 \times 2 \times 2$$

The exponent indicates the number of times the base is used as a

factor

4

Writing Powers

Powers can be written in exponential form or in expanded

Exponential form

7⁵

Expanded form

$$7 \times 7 \times 7 \times 7 \times 7$$

form.

Instruction

Numerical Expressions with Exponents

Exponential Form

Exponential Form of a Fractional Base

When the base is a fraction, both the

numerator

and denominator are

raised to the exp

exponent

Exponential form of a fractional base:

$$\left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right)$$

 Not an exponential form of a fractional base:

Expanded Form

$$\frac{2^{4}}{3} = \frac{2 \times 2 \times 2 \times 2}{3}$$

$$\frac{2}{3^{4}}$$

Neither one of these is the exponential

fractional

base.

Instruction

Numerical Expressions with Exponents

Slide

Evaluating Powers

PROCEDURE

To **evaluate**, or find the value of, a power, follow these steps:

- Identify the exponent.
- Write it in expanded form.
- Find the product

$$4 \times 2 \times 2$$

24 is equal to 16.

9

Evaluating Powers

To evaluate a power:

- 1. Identify the base and the exponent
- 2. Write it in expanded form.
- 3. Find the product.

Evaluate
$$\left(\frac{3}{4}\right)^2$$
.

$$\left(\frac{3}{4}\right)^2 = \left(\frac{3}{4}\right)\left(\frac{3}{4}\right) = \frac{3 \times \boxed{3}}{4 \times \boxed{4}} = \frac{9}{\boxed{16}}$$

Instruction

Numerical Expressions with Exponents

Evaluate (0.2)3.

$$0.04 \times 0.2$$

0.008

Summary

Numerical Expressions with Exponents

Lesson Question

What are powers and exponents?

Answer

A power is a base raised to an exponent. An exponent tells how many times to use the base as a factor.

Use this space to write any questions or thoughts about this lesson.

© Edgenuity, Inc.